Qu	Question		Answer/Indicative content	Marks	Guidance
1			A	1	
			Total	1	
2			A	1	
			Total	1	
3			D√	1	
			Total	1	
4			c√	1	Examiner's Comments Many candidates who noted that data from both pre and post-synaptic neurones had been included in the table and were able to apply their knowledge of membrane potentials to this information went on to choose C as the correct option.
			Total	1	
5			D√	1 (AO1.1)	
			Total	1	
6			В√	1 (AO2.5)	
			Total	1	
7			c√	1 (AO1.2)	
			Total	1	
8	а	i	action potential / nervous impulse, in sensory neurone ✓ synapse / described ✓ relay / intermediate, neurone ✓ (nervous impulse in) motor	3 max	
			neurone, passes to / AW, effector / muscle √		

Mark scheme - Neuronal Communication

		ii	<i>idea of</i> maintains balance / efficiency of movement √	1	
		iii	kinetic / movement, energy converted √ to, electrical energy / action potential √ <i>idea of</i> movement of statolith moves sensory hairs √ membrane of sensory hairs depolarises √	3 max	
	b		Support is weak because idea that clasification based on phylogeny √ statocysts could, have evolved on more than one occasion / be an example of convergent evolution √	2	
			Total	9	
9		i	no, action potentials / (electrical) impulses (in response to acid stimulus) √ (along) sensory neurones / neurones to CNS √ (because) no / few, <u>voltage gated</u> (sodium) channels open √ less depolarisation (of receptor membrane) / fewer Na ⁺ ions move in √	2 max (AO3.1)	ALLOW fewer, action potentials / (electrical) impulses, generated ALLOW neurones to brain IGNORE fewer sodium ion channels opened DO NOT ALLOW no depolarisation / no Na ⁺ ions move in <u>Examiner's Comments</u> Candidates showed limited awareness of the difference between the initial generator potential depolarisation as a result of sodium ion entry through ligand-gated channels, and the all-or-nothing action potential depolarisation which relies on voltage-gated channels. Most scored at least one mark though for realising that the latter cannot open in the mole rat. Some answers referred to failure to send a signal or message rather than an action potential. A common error was to state that no sodium ions would enter, rather than fewer, or that no depolarisation would occur.

	ïi	converts, chemical / stimulus, to action potential / electrical energy / electrical impulse √	1 (AO2.1)	ALLOW kinetic energy / pressure / temperature / mechanical energy / H ⁺ ions as examples of stimuli (as question states a pain receptor) IGNORE 'sensory information' / 'pain' <u>Examiner's Comments</u> This was generally well answered, with a number of candidates identifying the form of stimulus energy (mechanical or chemical for example) and stating that it was converted into electrical energy. Lower ability answers stated what a transducer is but did not apply this knowledge in the context of a pain receptor.
		Total	3	
10		D	1 (AO1.1)	
		Total	1	
11		с	1 (AO2.1)	
		Total	1	
12	i	motor neurone √	1	
	ii	saltatory conduction √ increases speed of, impulse / action potential, transmission √ insulates axon √	1 max	
		Total	2	
13	i	1. <u>antigens</u> on , neurones / nerve cell / Schwann cells / myelin sheath (activate immune system) √	2	For mp 1,2,and 3, IGNORE nerves ACCEPT oligodendrocytes / glial cells / cells in nervous system ACCEPT 'immune system fails to recognise <u>antigens</u> on , neurones / nerve cells / Schwann cells / myelin sheath , as self ' ACCEPT ' immune system recognises <u>antigens</u> on , neurones / nerve cells /

		 antibodies against , neurones / nerve cells / Schwann cells / myelin sheath (are produced)√ phagocytes / neutrophils / macrophages / T(killer) cells, attack / break down, neurones / nerve cells / Schwann cells / myelin sheath √ 		Schwann cells / myelin sheath , as, foreign / non self ' IGNORE T helper cells / T memory cells IGNORE 'kill' cells Examiner's Comments Successful candidates correctly used the key terms antigen and antibody and related their actions to the effects on nerve cells. The role of phagocytes, macrophages and T cells were frequently correctly stated. Candidates lost marks by failing to relate their answers to the nervous system instead giving a more general account of auto immune conditions. Weaker candidates were not specific enough in associating the correct part of the immune system with an attack on nerve cells. There was also confusion between the terms antigen and receptor.
	ii	fewer / damaged , Schwann cells ✓ no / less / incomplete / damaged, myelin (sheath) ✓ no saltatory conduction ✓	2 max	IGNORE no / dead, Schwann cells ACCEPT oligodendrocytes / glial cells ACCEPT less insulation (on neurone) ACCEPT description of lack of saltatory conduction e.g. action potential travels along whole axon membrane IGNORE ref to axon size Examiner's Comments Most candidates correctly identified that the Myelin sheath was missing or incomplete, and most could link this to a lack of saltatory conduction or fewer Schwann cells, to gain two marks.
		Total	4	
14		no nodes of Ranvier √ shorter local , currents / circuits √ whole axon needs to be depolarised √	1 max	IGNORE ref to jumping between nodes ALLOW more local currents / circuits ALLOW e.g. action potentials need to be generated all the way along the axon

			Examiner's Comments
			There were few correct responses for this part of the question which was assessing AO2 with many candidates referring to the impulse not being able to jump from node to node, which is a description of saltatory conduction already stated in the stem of the question. Good responses referred to the need for depolarisation to occur along the whole axon (membrane).
	Total	1	
15	В	1(AO2.6)	
	Total	1	
16	В	1(AO2.6)	
	Total	1	
17	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics): award the higher mark where the Communication Statement has been met. award the lower mark where aspects of the Communication		

1		
Statement have been missed.		
The science content		
determines the level.		
The Communication		
Statement determines		
the mark within a level		
Level 3 (5-6 marks)		
A comprehensive description of		
the differences between the two		
action potentials with some		
explanations for the differences.		Indicative scientific points may include:
		Descriptions
There is a well-developed line of		Dopamine neurone:
reasoning, which is clear and		
logically-structured and uses		 Is less polarised / has a less
scientific terminology at an		negative resting potential
appropriate level. All the		 Depolarisation shows less change
information presented is relevant		 Action potential peak is lower/less
and forms a continuous narrative.		positive
		 No clear refractory period
Level 2 (3-4 marks)		Action potential duration is longer
A good description of some of the		Repolarisation is slower
differences between the two		
action potentials with limited		
explanation.		
	6	Explanations
There is a line of reasoning		Resting potential set up by:
presented with some structure and		
use of appropriate scientific		Different type/number of
language. The information		sodium/potassium pumps in neuron
presented is mostly relevant.		membrane
		 Different type/number of potassium ion channels
Level 1 (1-2 marks)		ion channels
A limited description of some of the differences between the two		Steeper sodium ion gradient in the
		Purkyne neurone
action potentials with an attempt at some explanation.		 Steeper potassium ion gradient in the denamine pourope
		the dopamine neurone
The information is communicated		 Different type/more voltage-gated sodium and potassium ion channels
with only a little structure.		sodium and potassium ion channels in the Purkyne neurone
Communication is hampered by		
the inappropriate use of technical		
terms.		
0 marks		

		No response or no response worthy of credit.		
		Total	6	
				Award 3 max if explanation refers to what would normally happen in neurone instead of in presence of TTX DO NOT ALLOW cannot enter membrane ALLOW sodium ions / Na ions / Na+ , stay outside ALLOW action potential for impulse Examiner's Comments Higher ability candidates were able to
18	i	sodium ions / Na ions / Na+ , cannot enter √ no / prevents , depolarisation of membrane √ (membrane) remains at resting potential √ prevents action potential being generated √	4 max	Higher ability candidates were able to demonstrate understanding of the transmission of nerve impulses and the consequences of voltage-gated sodium ion channels being unable to open. Responses from lower ability candidates often lacked detail such as not stating that it is the axon membrane that is not depolarised. Some responses also showed confusion regarding the concepts.
		impulse not conducted (along axon) √ (so) no release of neurotransmitter √		Exemplar 5
	ii		2 max	transmission to this novel context. Award 1 max if explanation refers to what would normally happen rather than if diaphragm is paralysed

19	iii	from AVN to ventricles √ slows ventricular , systole / contraction √ longer delay before ventricular , systole / contraction , begins √ increases time (the heart is) in diastole / relaxation √ Total Can be used with , living cells / thick samples √ AVP √ <i>conclusion is valid because:</i> 1 concentration of Ca ²⁺ is	3 max 9 1 max (AO2.3)	once Examiner's Comments Many candidates gained credit for suggesting that ventricular systole would slow down which would lead to a decrease in heart rate. In good responses, candidates also suggested that there would be a longer delay between atrial and ventricular systole. Mark first response e.g. high resolution e.g. can see distribution of molecules within cells e.g. can control depth of field e.g. sharper / less blurred image ALLOW calcium ions for Ca ²⁺ throughout DO NOT ALLOW Ca ⁺ / calcium but penalise
		<i>suggestion:</i> slows / decreases , heart rate √ <i>explanation:</i> <i>Any two from</i> slows transmission of impulse		ALLOW bradycardia ALLOW prevents / stops for 'slows' for MP2 and MP3 'ventricular' must be mentioned
		diaphragm is paralysed so: no / little , change / increase , in volume of thorax ✓ no / little , change / decrease , in pressure in thorax ✓ no / little / less , air drawn into lungs ✓		ALLOW chest cavity / lungs for thorax throughout IGNORE oxygen Examiner's Comments Many good responses were seen where candidates gave concise descriptions for all marking points. Some candidates that did not achieve full marks were not specific enough in their statements or made reference to what normally happens during inspiration rather than what happens under the influence of TTX.

medium / high , causes increase		
in (membrane) potential √		MP 1 ALLOW e.g. the greater the strength of stimulus the greater the Ca ²⁺
3 action potential in , presynaptic		concentration
neurone / synaptic bulb, leads to ,		MP2 ALLOW figs go from -60 to +40mV
opening of Ca ²⁺ channels / entry of Ca ²⁺ \checkmark		
4 Ca ²⁺ , causes / AW , release of		
(named) neurotransmitter \checkmark		
- /		MP8 ALLOW figs stay at + 40mV
5 (named) neurotransmitter		
causes , Na+ / sodium ion ,		
channels to open in (post- synaptic) neurone √		
Synaptic/ neurone v		
6 if threshold is exceeded this		
causes , action potential in		
(postsynaptic) neurone /		
depolarises (postsynaptic)		
membrane √		
conclusion may not be valid		
because:		
7 changes in Ca ²⁺ concentration		
may not be the cause of		
(postsynaptic) action potential \checkmark		
8 Ca ²⁺ change from medium to		
high but no change in (membrane)		
potential √		
Total	5	